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Abstract

The paper is concerned with active stabilisation of self-excited vibration of slender rotating columns subject to

tangential follower forces. Such systems exhibit flutter-type instability as a result of energy transfer from rotation and to

transverse motion of the shaft. There are two reasons for the instability to occur in rotating slender shafts––rotation in

the presence of internal friction in the shaft material, and the follower load. The study reveals an interesting coupled

effect of these parameters on the system stability as they create a concave set in which the system remains stable, and

this means that one parameter neutralises influence of the other. The paper also takes up the problem of near-critical

behaviour of the system. Non-linear bifurcation analysis is carried out to predict type of the self-excitation (either soft

or hard), near-critical vibration amplitude and jump phenomena. In the second part of the paper a method of active

stabilisation based on making use of piezoelectric fibre composites (PFC) is presented. The composites containing active

fibres made of piezoceramics constitute the state-of-the-art structural materials capable of adjusting their mechanical

state according to dynamic loading conditions. Some fundamentals concerning the operation of PFCs as rotating

columns are given in the paper.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Rotor; Composite; Follower load; Flutter; Bifurcation

1. Introduction

Non-conservative systems subject to follower forces attract attention of numerous researchers acting in

the field of applied mechanics. The first to initiate the investigations was Beck (1959), who showed that an
excessive compressive load applied tangentially to a cantilever results in transverse vibration of the system.

The classically formulated Beck�s and Leipholz�s (1972, 1980) problems have undergone various modi-

fications. A non-uniform undamped beam with an elastic intermediate support was examined by De Rosa

and Franciosi (1990), who found that the loss of stability could take place via flutter or divergence. Other

works revealed that slender columns could exhibit flutter under a follower loading even when it is tensile.

The key factor for the instability to occur in such a case is the presence of internal friction in the column
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material. Altman and Goncalves de Oliveira (1990) presented an analysis of vibration and stability of shell

panels assuming slight internal damping. The dynamic loss of stability brought about by distributed fol-

lower forces is also known to concern plates in a supersonic gas flow or pipes conveying fluids, see

Pa€ııdoussis (1993). A non-linear damped Leipholz column was examined by Kurnik and Pe�kalak (1992),
who observed near-critical behaviour of the system and formulated periodic solutions to the discovered

limit cycles. They showed that tensile follower load always entails a supercritical Hopf�s bifurcation,

whereas compression can generate either super- or subcritical bifurcation, leading to a catastrophic loss of

the equilibrium stability. Kurnik and Przybyłowicz (1995) looked for a solution to the problem of de-

structive subcritical bifurcation and indicated a method of prevention by making use of piezoelectric

materials. It turned out that application of polymer-based piezoelectric actuators widens the stability

domain and enlarges the area in which the bifurcation still preserves as supercritical.

An extended problem of the stability of Leipholz�s slender column, with an additional effect taken into
account, i.e. its rotation was studied by Kurnik and Przybyłowicz (2001). Any flexible rotor with permanent

energy supply maintaining a constant rotation speed starts to exhibit orbital motion of its deflected form

around the axis placed between the supports. This phenomenon appears at a certain angular velocity, and the

necessary condition is, like in the case of non-rotating columns subject to tensile tangential force, the presence

of internal damping. The two sources of the instability, i.e. follower load and rotation are different in nature,

and their interaction presents an interesting dynamic problem. Both effects treated separately have been

recognised more or less thoroughly but studying their combination is still an interesting challenge to be met.

This paper is concerned with an extension of that problem. It is the active stabilisation of a slender
rotating column undergoing a follower load. The stabilisation is based on making use of piezoelectric ele-

ments in the form of fibres immersed in a matrix material.

The integration of piezoceramic (PZT) fibres within composite materials represents a new type of

structural materials. Tiny PZT fibres of 30 lm in diameter can be aligned in an array, electrodised and then

integrated into planar architectures. Such architectures are embedded within glass or graphite fibre-rein-

forced polymers and become piezoelectric after being poled, see Sporn and Schoencker (1999). The idea of

combining piezoceramics with polymers occurred in the 1980s, see Newnham et al. (1980) and several years

later it evolved towards smart composite materials. Piezoelectric fibre composites (PFCs) have a large
potential for controlling. Bent et al. (1995) underlined that matrix and ceramic combinations, volume

fractions, and ply angles contribute to the tailorability of PFCs, which make them applicable to structures

requiring highly distributed actuation and sensing. Manufacturing technologies of PFCs have been adopted

from graphite/epoxy manufacturing methods. Today, PFCs are being equipped with an interdigitated

electrode pattern (the so-called IDEPFCs), see Bent and Hagood (1997). Regardless of the electrode

arrangement the piezoelectric composites create a class of active materials that can cover entire structures––

the actuators that are conformable to curved elements such as shafts, tubes or shells.
2. Formulation of the problem

Consider a slender rotating shaft supported on a bearing attached to one of its ends. The angular

velocity x is assumed constant, the shaft is transversely unloaded (it rotates around the vertical axis or the

gravity force is neglected) but undergoes either tensile or compressive tip-concentrated follower load P––see
Fig. 1. The shaft is a thin-walled structure made of a piezoelectric fibre multi-layer angle-ply composite

material. The material is assumed to possess some dissipative properties. In the analysed system the

damping capability of a single lamina is reflected by Kelvin–Voigt�s rheological model. Additionally, cer-

tain viscous resistance from the surrounding environment, in which the column can vibrate, is also included

in the analysis. The external damping will be assumed viscous. It is clear that detailed modelling of
the considered thin-walled tube must result in coupled partial differential equations describing mutually



Fig. 1. Model of the rotating column.
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dependent effects of bending, twisting and swelling. However, the flutter instability is related to the bending

mode only, displaying the lowest natural eigenfrequency in the whole spectrum. Therefore, it is reasonable

to decouple the bending mode at the level of modelling and focus the attention on the transverse vibration

of the structure as a rotating beam. Additionally, having neglected the rotary and longitudinal inertia as

well as the shear effect of the column, one finds the linearised equations of motion in the following form, see

Kurnik and Przybyłowicz (2001):
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where u and v are the transverse displacements of the shaft, b and c are the dimensionless coefficients of the

internal and external damping, respectively, x is the rotation speed of the column, l is the follower load, YJ
is the bending stiffness, qA is the mass density per unit length, MA

Y and MA
Z are the bending moments

generated by active piezoelectric fibres embedded in the composite structure. Non-linear terms in Eqs. (1)
and (2) appear because of the curvature of deflected equilibrium position of the rotating column during

vibration. The exact relationship for the curvature has been expanded into a power series with respect to u
and v, and then truncated at terms of the third order (the first non-linear approximation).

As mentioned in the introduction, the system behaviour is particularly sensitive to the damping coeffi-

cient characterising the internal friction of the column material. Consider now the stiffness matrix of the

composite lamina corresponding to a plane stress–strain state expressed in the principal anisotropy axes:
Q� ¼

Y11 1þ b11
o
ot

� �
1� m212

Y22
Y11

m12Y22 1þ b22
o
ot

� �
1� m212

Y22
Y11

0

m12Y22 1þ b22
o
ot

� �
1� m212

Y22
Y11

Y22 1þ b22
o
ot

� �
1� m212

Y22
Y11

0

0 0 G12 1þ b12

o

ot

� �

2
666666664

3
777777775

ð3Þ



Fig. 2. Young�s modulus vs. lamination angle h.

Fig. 3. Dimensional damping b vs. lamination angle h.
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The equivalent global Young�s modulus of the laminate is
Y � ¼ Q�
11 �

ðQ�
12Þ

2

Q�
22

ð4Þ
In fact, the global Young�s modulus is, mathematically, a rational function, in which a second-degree

polynomial with respect to the operator o=ot stands in the numerator and a first-degree one in the de-

nominator. Simplifying the thus determined modulus so that its form could be analogous to the mathe-

matical formulation of Kelvin–Voigt�s rheological model one finally gets
Y � ¼ Y 1

�
þ b

o

ot

�
ð5Þ
where
b ¼ Y11b11 cos
4 hþ Y22b22 sin

2 hðsin2 hþ 2m12 cos
2 hÞ þ G12b12 sin

2 2h

Y ¼ Y11 cos4 hþ Y22 sin
2 hðsin2 hþ 2m12 cos

2 hÞ þ G12 sin
2 2h

ð6Þ
Both, the resulting damping and stiffness coefficients are strongly depend on the lamination angle h. Ex-
emplary diagrams disclosing these quantities as functions of the ply angle are shown in Figs. 2 and 3, where

typical values of b11, b22 and b12 corresponding to graphite/epoxy composites were used in the calculations.
It should be emphasised, however, that these values can be easily adjusted (e.g. increased) in case if needed

by employing other laminae based on polymer matrices with more pronounced dissipative properties.
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3. Stability of the system

As the flutter-type instability is a two-dimensional-definite phenomenon the equations of motion can be

simplified by projecting their exact solution onto a subspace stretched over two, at least, approximation
functions. In other words, the two partial differential equations, see Eq. (1), can be transformed into a set of

four second-order ordinary differential equations by making use of bimodal Galerkin�s discretisation based

on the two first eigenfunctions F1ðxÞ, F2ðxÞ corresponding to the cantilever:
uðx; tÞ ¼ y1ðtÞF1ðxÞ þ y2ðtÞF2ðxÞ; vðx; tÞ ¼ z1ðtÞF1ðxÞ þ z2ðtÞF2ðxÞ ð7Þ
The discretisation imposing the following orthogonality condition:
Z 1

0

Ci u½y1ðtÞ; y2ðtÞ; F1ðxÞ; F2ðxÞ�; v½z1ðtÞ; z2ðtÞ; F1ðxÞ; F2ðxÞ�f gdFiðxÞ ¼ 0; i ¼ 1; 2 ð8Þ
where Ci represents the left-hand side of the equations of motion, yields second-order ordinary differential

equations, which can be then transformed into eight first-order ones by introducing new variables: w1 ¼ y1,
w2 ¼ dy1=dt, w3 ¼ y2, w4 ¼ dy2=dt, w5 ¼ z1, w6 ¼ dz1=dt, w7 ¼ z2, w8 ¼ dz2=dt. The equation of motion can

be now written in a compact vector form:
_ww ¼ Aðb; c; l;xÞwþNðw; b; lÞ ð9Þ
where A is the matrix of linearised equations and N represents the non-linear part. Solving the eigenvalue

problem of the linearised system matrix, one obtains eight complex eigenvalues. The most interesting is the

behaviour of that one with the maximum real part (rm) as it determines the threshold of the flutter in-

stability. The trajectory of rm on the complex plane for increasing tensile and compressive follower load can
be quite complicated, as shown in Fig. 4. It suggests that the stability region on the two-parameter plane

defined by rotation speed and follower load can be concave. This can be seen in Fig. 5, where the stability

region is presented for different values of the internal friction. Both these effects, i.e. l and x, taken sepa-

rately are known to destabilise slender columns but the main intention of the investigation has been focused

on the interaction between them when acting simultaneously. Unlike expected, the stability domain is not a

convex set, which would have meant a synergetic effect of l and x. It turns out that the rotation and

follower load contradict each other eventually stabilising the system, hence the set of stable combinations

of l and x is concave.
Fig. 4. Trajectory of the decisive eigenvalue.



Fig. 5. Stability regions for different damping coefficients.
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4. Non-linear analysis

The derived equations of motion and determined region of stability enable one to proceed with a non-

linear analysis in order to examine the near-critical behaviour of the system. One of the most important

problems to be investigated is to recognise the conditions in which the flutter instability occurs, i.e. whether

the self-excited vibration is of a soft or hard type. Expressing the problem in mathematical terms, we deal

with Hopf �s bifurcation as the trivial static equilibrium position evolves into a periodic solution. Having

found such a solution, describing in fact a limit cycle, it is possible to evaluate its orbital stability. This
allows one to predict the properties of the bifurcating vibration and determine if it is super- or subcritical.

In the latter case the system is threatened with a catastrophic loss of the stability as a slight disturbance,

even below the critical threshold could lead to a sudden jump of the vibration amplitude onto the nearest

stable limit cycle placed far from the unstable equilibrium position. In order to answer the question in

which conditions such a situation could happen it is necessary to construct a bifurcating solution, where the

active bifurcation parameters will be the follower load and rotation speed. The approach by Iooss and

Joseph (1980) is incorporated into the analysis.

Rewrite the equation of motion, see Eq. (9), in the following form:
_ww ¼ fðw; kÞ ð10Þ
and predict the periodic bifurcating solution in the form:
w ¼
X1
n¼1

en

n!
wnðUtÞ ð11Þ
The bifurcating solution is based on 2pn-periodic functions wn of the frequency Un expressed in term of a

power series with respect to e as well:
UðeÞ ¼ U0 þ
X1
n¼1

en

n!
Un ð12Þ
Analogously, the bifurcation parameter k (l or x):
kðeÞ ¼ kcr þ
X1
n¼1

en

n!
kn ð13Þ



W. Kurnik, P.M. Przybyłowicz / International Journal of Solids and Structures 40 (2003) 5063–5079 5069
From Eq. (12) the reciprocal function e ¼ eð. . . kn . . .Þ can be found for a small-degree approximation and

coupled with Eq. (11) in order to derive the direct relationship between the bifurcating solution and

parameter near the critical threshold kcr.
Now, take into account the series given by Eqs. (10)–(12) truncated at the second terms:
wðUt; eÞ ¼ ew1 þ 1
2
e2w2

U ¼ U0 þ 1
2
e2U22

k ¼ kcr þ 1
2
e2k2

ð14Þ
as it can be proved that for any odd number of n the coefficients Un and kn vanish, see Iooss and Joseph

(1980). Now, the bifurcating solution assumes the form:
wfUðkÞtg ¼ w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
k� kcr
k2

s
þ w2

k� kcr
k2

ð15Þ
where
w1 ¼ 2eRefqexpðiUtÞg; w2 ¼ 0 ð16Þ
as w2 disappears because of the lack of even-order terms in the equations of motion Eq. (9), see also Eq. (1).

The vector q corresponds to the following eigenproblem:
fAðkcrÞ � rIgq ¼ 0 ð17Þ
Presented in Eq. (14) coefficients k2 and U2 are
k2 ¼ �RefW2g
3n
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3
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where the vector q� is an eigenvector corresponding to the following adjoint eigenproblem:
fATðkcrÞ � �rrIgq� ¼ 0 ð21Þ
For uniqueness, the vectors q and q� satisfy the orthonormalisation conditions that imply
hq; q�iP
X8
i¼1

qi�qq�i ¼ 1; hq; �qq�iP
X8
i¼1

qiq�i ¼ 0 ð22Þ
Subsequently, the thus obtained bifurcating solution must be examined with respect to its stability, which

depends on the sign of Floquet�s exponent defined as
rðeÞ ¼ �nk2e
2 þOðe4Þ ð23Þ
where Oðe4Þ are negligible terms of higher orders of e. The trivial solution w ¼ 0 bifurcates onto an orbitally

stable limit cycle (supercritical bifurcation) when r > 0 or unstable (subcritical bifurcation) if r < 0.



Fig. 6. Near-critical behaviour of the bifurcating solution in the entire area of the stability boundary.

Fig. 7. Evolution of the stability contours for increasing amplitude of the limit cycle.
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Some selected results of the bifurcation analysis are presented in Figs. 6 and 7. Bifurcation diagrams
depicting the non-critical self-excited vibration amplitude e around several points lying on the stability

boundary are shown in Fig. 6. The parabolic evolutions of e are shown in the form of cross-sections in the

direction of either follower load or rotation speed. As can be seen an appearance of the disadvantageous

subcritical bifurcation is possible for compressive follower loads (dashed lines), however certain combi-

nations of l and e may exclude such a dangerous response. Fig. 7 presents the evolution of the stability

region allowing for increasing amplitude of the sprung-up self-excitation. Expectedly, the subcritical

bifurcation occurs for negative l only.
5. Piezoelectric actuation of the rotating shaft

Recent developments in the field of smart structures and the coming of active composites into being have
opened new possibilities to the control of rotating shafts. Composite shafts, due to low specific weight,



Fig. 8. Laminated column with active fibres.

Fig. 9. Single piezoelectric fibre.

Fig. 10. Sensor layer attached to a shell-like structure.
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anisotropic properties, and excellent torsional stiffness are very competitive materials with respect to their
traditional steel counterparts. The application of active piezoelectric fibres make them competitive even

more.

In this section fundamentals of active control of rotating shafts made of smart laminates containing

piezoelectric fibres are discussed in detail. For this purpose assume that the rotating column is a sym-

metrically laminated composite with embedded transversely poled piezoceramic fibres which can be arbi-

trarily angle plied together with the reinforcing fibres. Between each lamina there is a set of

circumferentially separated actuator electrodes in the form of rectangular patches glued along the column

axis. A schematic of the composite column and some of its elements are shown in Figs. 8 and 9.
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Before examining the efficiency of the actuation system, check the applicability of light PVDF polymers

for sensing the bending vibration that threatens the considered rotating column. The choice of PVDF is due

to its distinguished advantages, which are wide frequency range, vast dynamic range, high elasticity and

conformability, good voltage output, high dielectric strength withstanding strong 75 V/lm fields, where
most piezoceramics fail, and relatively low material and fabrication costs. Piezoelectric films can be cut and

glued with commercial adhesives. Many conductive electrode coatings are available in the market.

Consider, in general, a single PVDF ring-shaped thin layer having the anisotropy axes oriented as shown

in Fig. 10. The piezoelectric effect is described by the following constitutive equation (in principal an-

isotropy axes), see Nye (1985):
Di ¼ dijrj þ �ijEj ð24Þ
where Di is the dielectric displacement, dij are the coefficients of the electromechanical coupling, rj is the

mechanical stress, �ij are the dielectric permittivity coefficients, Ej is the electric field vector. Assuming the

pure direct mechanical-to-electrical conversion effect (excluding presence of any additional electric fields:

E ¼ 0) one writes down:
Di ¼ dijrj ð25Þ
In a more explicit form the shape of the electromechanical coupling matrix can be observed. The lack of

natural shear coefficients is worth mentioning, see Damjanovi�cc and Newnham (1992):
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For a thin layer (in-plane stress–strain state: r3; r4; r5 ¼ 0):
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Transform now the co-ordinate system ð1; 2; 3Þ into ðx; y; zÞ by rotation around the third axis 3 � z by h.
�DD ¼ �dd�rr; �rr ¼ ½rx; ry ; sxy �T ð28Þ
where the overbars are relative to the rotated co-ordinate system:
�dd ¼ TdT�1; where T ¼
cos2 h sin2 h sin 2h
sin2 h cos2 h �sin 2h

� 1
2
sin 2h 1

2
sin 2h cos 2h

2
4

3
5 ð29Þ
Moreover,
�rr ¼ �QQ�ee ) �DD ¼ �dd �QQ�ee; �ee ¼ ½ex; ey ; 12cxy �
T ð30Þ
where �QQ ¼ TQT�1, which entails �DD ¼ TdT�1TQT�1�ee ¼ TdQT�1�ee. As PVDFs are poled in the third di-

rection the electrodes must be attached to the normal surfaces. Therefore, the dielectric displacement (and

resulting charge) is of the greatest interest:
�DD3 ¼ D3 ¼ Dz ¼ TdQT�1
� �

3
�ee ¼ ½D1;D2;D3� � ½ex; ey ; 12cxy �

T ð31Þ
A single PVDF sensor patch is glued to the surface to each structure shown in Fig. 11.



Fig. 11. Polarisation of PVDFs.

Fig. 12. Measured vibration modes.

Fig. 13. Model of the sensors for measuring bending modes.
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The structure can be subject to a combination of the following vibration modes: (a) transverse vibration
due to radial motion (pure swelling in the radial direction), (b) transverse vibration due to bending, (c)

torsional vibration (twisting)––see Fig. 12. Find now, how effective can be the PVDF sensor in measuring

each of the indicated vibration types:
US ¼
q3
S
¼ q3hs

�sS
¼ q3hs

2p�srls
ð32Þ
Let the sensor be a small rectangular patch bonded to the host structure as shown in Fig. 13. This time

(pure bending) the strain vector assumes the form: �ee ¼ ½ex; 0; 0�, and the dielectric displacement in the third
(z) axis is



Fig. 14. Efficiency of voltage generation for bending vibration modes vs. orientation of the PVDF sensing patch.
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D3 ¼ ½D1;D2;D3�
ex
0

0

2
4

3
5 ¼ D1ex ð33Þ
The electric charge and the resulting voltage will be
q3 ¼
Z
A
D3 dA ¼ D1r2

Z xsþðls=2Þ

xs�ðls=2Þ
jðxÞdx

Z uiþðv=2Þ

ui�ðv=2Þ
sinudu ð34Þ
where
D1 ¼ ½sin2 hðd32 þ m12d31Þ þ cos2 hðd31 þ m12d32Þ�
Ys cos 2h
1� m212

ð35Þ
The term D1 strongly depends on the geometric configuration of the attached sensor. This dependence is

shown in Fig. 14.
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�svls

Z xsþðls=2Þ

xs�ðls=2Þ
jðxÞdx cos ui
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where j denotes the curvature: j ¼ o2w=ox2, the substitution of which entails
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As can be seen the produced voltage is directly proportional to the difference between the slopes at the

beginning and ending points of the sensor patch. For very small sensor elements (both in the radial and

longitudinal directions), Eq. (37) can be rewritten as follows:
US ¼ lim
ls!0
v!0

USðls; vÞ ¼ 2
D1hsr
�s

sinui lim
ls!0

ow xs þ ls
2

� �
ox

�
ow xs � ls

2

� �
ox

ls
lim
v!0

sin
v
2

v

¼ D1hsr
�s

o2wðxsÞ
ox2

sinui ð38Þ



Fig. 15. Actuator patch controlling a part of the piezoelectric fibres.
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Consider now a single layer of a composite shaft with an electrode covering a single bunch of piezoelectric

fibres embedded right beneath the electrode, see Fig. 15. The bending moment MA
ij produced by the jth

actuator in the ith composite layer is
MA
ij ¼

Z
Aij

rA
x PS dA ¼

Z
Aij

NrEijr sinudA ð39Þ
where Eij is the electric field applied to the jth electrode on the ith layer, and Nr is a piezoelectric constant

describing the material and electromechanical properties as well as geometric parameters (including the

lamination angle h) of the active lamina.

The integration area Aij appearing in (39) can be described as follows:
Aij ¼ ðr;uÞ : ri



6 r6 ri þ
h
N
;uj �

a
2
6u6uj þ

a
2

�
ð40Þ
where ri is the inside radius of the ith layer, h is the thickness of the laminate shaft, N is the number of

layers, uj is the current angular position of the middle point of the jth electrode patch (actuator), a is the

angular width of the electrode (assumed the same for every actuator). Hence,
MA
ij ¼ NrEij

Z riþðh=NÞ

ri

r2 dr
Z ujþða=2Þ

uj�ða=2Þ
sinudu ð41Þ
if the electric field and composition of the embedded piezoelectric fibres are homogeneous. Assuming that

h=r � 1:
MA
ij ¼ 2NrEijr2i

h
N

sinuj sin
a
2

ð42Þ
The voltage measured by a single piezoelectric (e.g. PVDF) sensor associated with jth actuator electrode

on the ith composite layer would be
USij ¼
D1rihs
�s

o2wðxsÞ
ox2

sinuj ð43Þ
where hs is the sensor thickness, �s is its dielectric permittivity, xs is its location along the column axis.

Assuming the control strategy as a simple velocity feedback, one notes
UAij ¼ j
dUSij

dt
ð44Þ
It should be noted that the above strategy, however linear by principle, strongly affects the non-linear

response of the system as it creates new dynamic conditions in which the eventual limit cycle originates.
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Thus the linear control may change the quality of the bifurcation process that takes place at the criticality,

and possibly change its general character (e.g. convert harsh subcritical bifurcation into a smooth one,

supercritical).

Knowing that Eij ¼ UAij=ðh=NÞ and d sinuj=dt ¼ x cosuj, the electric field controlling the ijth actuator
will be
Eij ¼
ND1rihs

h�s
j
d

dt
o2wðxs; tÞ

ox2
sinuj

� �
ð45Þ
and, finally, the actuating moment:
MA
ij ¼ 2jNr

D1r3i hs
�s

sinuj sin
a
2

o3wðxs; tÞ
ox2ot

sinuj

�
þ x

o2wðxs; tÞ
ox2

cosuj

�
ð46Þ
The resultant moment is
MA ¼
XN
i¼1

Xn
j¼1

MA
ij ð47Þ
where N is the number of layers the composite shaft is made of, n is the number of electrode patches

(actuators) along the perimeter of a single layer. Hence,
MA
ij ¼ 2jNr

D1r3i hs
�s

sin
a
2

o3wðxs; tÞ
ox2ot

XN
i¼1

r3i
Xn
j¼1

sin2 uj

 
þ x

o2wðxs; tÞ
ox2

XN
i¼1

r3i
Xn
j¼1

sinuj cosuj

!
ð48Þ
Let r denote the average radius of the thin-walled shaft structure, thus
ri ¼ r þ h
2i� N
N

¼ r 1

�
þ h
2rN

ð2i� NÞ



ð49Þ
Since h=r � 1 (and additionally divided by 2N > 1) it is reasonable to assume ri ¼ r, which entails
XN
i¼1

r
�

þ h
2i� N
N

�3

� Nr3 ð50Þ
Have a closer look now at the sums in (48) involving the expressions of the angular position uj. Note, that

the angular distance between the jth and jþ 1th electrode patch is ujþ1 � uj ¼ 2p=n. Denoting the position

of the first patch by u1 ¼ u one finds the locations of the subsequent electrodes to be uj ¼ uþ 2pj=n.
Studying the properties of the sums in (48) one can state:
Xn
j¼1

sin2 uj ¼
Xn
j¼1

sin2 uj

�
þ j

2p
n

�
¼

sin2 u for n ¼ 1

2 sin2 u for n ¼ 2
n
2

for nP 3

8><
>: ð51Þ
and
Xn
j¼1

sinuj cosuj ¼ 1
2

Xn
j¼1

sin 2 uj

�
þ j

2p
n

�
¼

1

2
sin 2u for n ¼ 1

sin 2u for n ¼ 2

0 for nP 3

8><
>: ð52Þ



Fig. 16. Actuating moment vs. number of electrode patches.
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It is a very important conclusion that the application of three or more electrode patches ensures the

generation of a constant bending moment, i.e. a non-pulsating one, despite the discrete distribution of the
patches along the perimeter and rotary motion of the shaft. Finally,
MA ¼ jNr
ND1r3i hs

�s

o3wðxs; tÞ
ox2ot

n sin
p
n

ð53Þ
where sinða=2Þ has been replaced with sinðp=nÞ, which holds true for negligible gaps separating and in-

sulating the electrode patches.
Except for the material and structural parameters, the actuating moment is directly proportional to the

curvature and its first time derivative. There appears yet another parameter responsible for the magnitude

of MA––the number n of the actuator electrodes per each layer. The question is to what extent MA depends

on n (what is the limit value of MA, what is the minimum one?). To answer this, draw a diagram of the

function n sinðp=nÞ standing in (53). The moment MA is proportional to this function, see Fig. 16. The

maximum bending moment produced by the piezoelectric fibres is strictly related with the following limit:
lim
n!1

n sin
p
n
¼ p ð54Þ
It is clearly seen (Fig. 16) that an infinite increase in the number of electrode patches is useless. Fine

segmentation of the electrodes yields incommensurable results with a degree of unavoidable technical
Fig. 17. The least number of electrodes generating a constant bending moment.



Fig. 18. Evolution of the stability region vs. gain j in the active control system.
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complication of the control system. It is preferable to use the least possible number of actuators along the
perimeter in achieving the desired effect, i.e. the smooth operation of the stabilising system (constant

counter-bending). This amounts to the incorporation of a three-electrode control set, see Fig. 17.
6. Effect of active stabilisation

Having decomposed the obtained stabilising moment MA, see (53), into MA
Y and MA

Z components, and

substituting them into equations of motion (1) and (2), one can proceed with the stability analysis once

again in the same way as it was done in Section 3. By tracking the eigenvalues of the matrix of the linearised
equations of motion (this time with non-zero terms MA

Y and MA
Z ) in various operating conditions, i.e.

different combinations of the rotation speed and follower load, one can determine regions of stable and

unstable working of the shaft. Exemplary results are shown in Fig. 18.

First of the diagram (j ¼ 0) shows combinations of x and l corresponding to the stable and unstable

operation of the rotating column without active control (behaviour of an ordinary column). The other

depict evolution of the stability domain for increasing gain factors j. It is clearly visible that the application
of active control leads to the widening of the stability domain. This effect is particularly pronounced for

moderate follower loads. For instance, the relative growth of the critical speed in the range of its maximum
sensitivity (�50 > l > �75) reaches even 400%. Further increase of xcr is not allowed because of the

breakdown voltage limit which equals 75 kV/mm in PZT piezoceramics. In the numerical experiments the

control voltage applied to the actuator fibres did not exceed 10% of the breakdown value (roughly 200 V

for fibres 30 lm in diameter).
7. Concluding remarks

The paper is concerned with a rotating cantilever column (slender shaft) subject to a tip-concentrated
follower load and actively stabilised by piezoelectric elements. The shaft is made of an active laminate––the
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piezoelectric fibre composite. A velocity feedback is assumed in the system of active stabilisation. Analysis

proves that rotation and follower load contradict each other eventually stabilising the system. Unexpect-

edly, the stability region appears to be a concave set. Application of active stabilisation yields desirable

effects as the area of safe working enlarges in general. It turns out that shafts undergoing compression are
particularly sensitive to such a stabilisation method, however in the case on tensile loads the approach

becomes ineffective––the system can be stabilised with respect to e.g. follower load but at the cost of angular

velocity, the critical threshold of which drops.
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